2,048 research outputs found

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations

    Type-Constrained Representation Learning in Knowledge Graphs

    Full text link
    Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides storing facts about the world, schema-based knowledge graphs are backed by rich semantic descriptions of entities and relation-types that allow machines to understand the notion of things and their semantic relationships. In this work, we study how type-constraints can generally support the statistical modeling with latent variable models. More precisely, we integrated prior knowledge in form of type-constraints in various state of the art latent variable approaches. Our experimental results show that prior knowledge on relation-types significantly improves these models up to 77% in link-prediction tasks. The achieved improvements are especially prominent when a low model complexity is enforced, a crucial requirement when these models are applied to very large datasets. Unfortunately, type-constraints are neither always available nor always complete e.g., they can become fuzzy when entities lack proper typing. We show that in these cases, it can be beneficial to apply a local closed-world assumption that approximates the semantics of relation-types based on observations made in the data

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework

    A Multivariate Surface-Based Analysis of the Putamen in Premature Newborns: Regional Differences within the Ventral Striatum

    Get PDF
    Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus) between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity disorder and attention-related learning disabilities in preterm neonates. © 2013 Shi et al

    iMap4: An Open Source Toolbox for the Statistical Fixation Mapping of Eye Movement data with Linear Mixed Modeling.

    Get PDF
    A major challenge in modern eye movement research is to statistically map where observers are looking, by isolating the significant differences between groups and conditions. Compared to signals of contemporary neuroscience measures, such as M/EEG and fMRI, eye movement data are sparser with much larger variations in space across trials and participants. As a result, the implementation of a conventional linear modeling approach on two-dimensional fixation distributions often returns unstable estimations and underpowered results, leaving this statistical problem unresolved (Liversedge, Gilchrist, & Everling. 2011). Here, we present a new version of the iMap toolbox (Caldara and Miellet, 2011) which tackles this issue by implementing a statistical framework comparable to those developped in state-of the- art neuroimaging data processing toolboxes. iMap4 uses univariate, pixel-wise Linear Mixed Models (LMM) on the smoothed fixation data, with the flexibility of coding for multiple between- and within- subject comparisons and performing all the possible linear contrasts for the fixed effects (main effects, interactions, etc.). Importantly, we also introduced novel nonparametric tests based on resampling to assess statistical significance. Finally, we validated this approach by using both experimental and Monte Carlo simulation data. iMap4 is a freely available MATLAB open source toolbox for the statistical fixation mapping of eye movement data, with a user-friendly interface providing straightforward, easy to interpret statistical graphical outputs. iMap4 matches the standards of robust statistical neuroimaging methods and represents an important step in the data-driven processing of eye movement fixation data, an important field of vision sciences

    Misplaced Trust: Measuring the Interference of Machine Learning in Human Decision-Making

    Full text link
    ML decision-aid systems are increasingly common on the web, but their successful integration relies on people trusting them appropriately: they should use the system to fill in gaps in their ability, but recognize signals that the system might be incorrect. We measured how people's trust in ML recommendations differs by expertise and with more system information through a task-based study of 175 adults. We used two tasks that are difficult for humans: comparing large crowd sizes and identifying similar-looking animals. Our results provide three key insights: (1) People trust incorrect ML recommendations for tasks that they perform correctly the majority of the time, even if they have high prior knowledge about ML or are given information indicating the system is not confident in its prediction; (2) Four different types of system information all increased people's trust in recommendations; and (3) Math and logic skills may be as important as ML for decision-makers working with ML recommendations.Comment: 10 page

    Meeting abstract: iMap 4: An Open Source Toolbox for the Statistical Fixation Mapping of Eye Movement data with Linear Mixed Modeling.

    Get PDF
    A major challenge in modern eye movement research is to statistically map where observers are looking at, as well as isolating statistical significant differences between groups and conditions. Compared to signals of contemporary neuroscience measures, such as M/EEG and fMRI, eye movement data are sparse with much larger variations across trials and participants. As a result, the implementation of a conventional Hierarchical Linear Model approach on two-dimensional fixation distributions often returns unstable estimations and underpowered results, leaving this statistical problem unresolved. Here, we tackled this issue by using the statistical framework implemented in diverse state-of-the-art neuroimaging data processing toolboxes: Statistical Parametric Mapping (SPM), Fieldtrip and LIMO EEG. We first estimated the mean individual fixation maps per condition by using trimmean to account for the sparseness and the high variations of fixation data. We then applied a univariate, pixel-wise linear mixed model (LMM) on the smoothed fixation data with each subject as a random effect, which offers the flexibility to code for multiple between- and within- subject comparisons. After this step, our approach allows to perform all the possible linear contrasts for the fixed effects (main effects, interactions, etc.). Importantly, we also introduced a novel spatial cluster test based on bootstrapping to assess the statistical significance of the linear contrasts. Finally, we validated this approach by using both experimental and computer simulation data with a Monte Carlo approach. iMap 4 is a freely available MATLAB open source toolbox for the statistical fixation mapping of eye movement data, with a user-friendly interface providing straightforward, easy to interpret statistical graphical outputs and matching the standards in robust statistical neuroimaging methods. iMap 4 represents a major step in the processing of eye movement fixation data, paving the way to a routine use of robust data-driven analyses in this important field of vision sciences. Meeting abstract presented at VSS 2015

    Comparative Analysis of Kinetic Realizations of Insulin Signaling

    Full text link
    Several studies have developed dynamical models to understand the underlying mechanisms of insulin signaling, a signaling cascade that leads to the production of glucose - the human body's main source of energy. Reaction network analysis allows us to extract formal properties of dynamical systems without depending on their parameter values. This study focuses on the comparison of reaction network analysis of insulin signaling in healthy cell (INSMS or INSulin Metabolic Signaling) and in type 2 diabetes (INRES or INsulin RESistance). INSMS and INRES are similar with respect to some network, structo-kinetic, and kinetic properties. However, they differ in the following network properties: the networks have different species sets and functional modules, INRES is more complex than INSMS, and INRES loses the concordance of INSMS. Based on structo-kinetic properties, INSMS is injective while INRES is not. And one of the most significant differences between INSMS and INRES in terms of kinetic properties is the loss of ACR species in INRES (INSMS has 8 ACR species). These results show the insights we gain from analyzing kinetic realization, beyond what we already know from analyzing the dynamical systems of insulin signaling in healthy and insulin-resistant cells.Comment: 30 pages, 1 figur
    corecore